Low angiogenic potency induced by the implantation of ex vivo expanded CD117(+) stem cells.

نویسندگان

  • Tao-Sheng Li
  • Masanori Hayashi
  • Ze-Lin Liu
  • Hiroshi Ito
  • Akihito Mikamo
  • Akira Furutani
  • Masunori Matsuzaki
  • Kimikazu Hamano
چکیده

Ex vivo expansion of stem cells might be a feasible method of resolving the problem of limited cell supply in cell-based therapy. The implantation of expanded CD34(+) endothelial progenitor cells has the capacity to induce angiogenesis. In this study, we tried to induce angiogenesis by implanting expanded CD117(+) stem cells derived from mouse bone marrow. After 2 wk of culture with the addition of several growth factors, the CD117(+) stem cells expanded approximately 20-fold and had an endothelial phenotype with high expression of CD34 and vascular endothelial-cadherin. However, >70% of these ex vivo expanded cells had a senescent phenotype by beta-galactosidase staining, and their survival and incorporation were poor after implantation into the ischemic limbs of mice. Compared with the PBS injection only, the microvessel density and the percentage of limb blood flow were significantly higher after the implantation of 2 x 10(5) freshly collected CD117(+) cells (P < 0.01) but not after the implantation of 2 x 10(5) expanded CD117(+) cells (P > 0.05). These data indicate that ex vivo expansion of CD117(+) stem cells has low potency for inducing therapeutic angiogenesis, which might be related to the cellular senescence during ex vivo expansion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation.

Therapeutic angiogenesis can be induced by the implantation of bone marrow mononuclear cells. We investigated the roles of mature mononuclear cell and stem cell fractions in bone marrow in this treatment. Although CD34 is the most popular marker for stem cell selection for inducing therapeutic angiogenesis, we separated CD117-positive cells (CD117+) from mature bone marrow mononuclear cells [CD...

متن کامل

Regeneration of Infarcted Myocardium by Intramyocardial Implantation of Ex Vivo Transforming Growth Factor- –Preprogrammed Bone Marrow Stem Cells

Background—Recent studies have shown that bone marrow–derived stem cells differentiate into the phenotype of cardiomyocytes in vivo and in vitro. We tried to regenerate infarcted myocardium by implanting ex vivo transforming growth factor (TGF)–preprogrammed CD117 (c-kit)–positive (CD117 ) stem cells intramyocardially. Methods and Results—CD117 cells were isolated from the bone marrow mononucle...

متن کامل

Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells.

BACKGROUND Recent studies have shown that bone marrow-derived stem cells differentiate into the phenotype of cardiomyocytes in vivo and in vitro. We tried to regenerate infarcted myocardium by implanting ex vivo transforming growth factor (TGF)-beta-preprogrammed CD117 (c-kit)-positive (CD117+) stem cells intramyocardially. METHODS AND RESULTS CD117+ cells were isolated from the bone marrow m...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

Ex vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow

Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 286 4  شماره 

صفحات  -

تاریخ انتشار 2004